

From Bones to Bucks: Unlocking the Value of Marine side streams

Rachel Durand, SINTEF rachel.durand@sintef.no

sustainable climate-Friendly quality fOOD

Ingredients from Marine side-stReams

FOODIMAR

Organised by CEVA

Budget: €1,580,812

Duration: May 2024 - April 2027

To develop new industry-relevant solutions for valorising key sidestreams from fisheries and aquaculture in climate-friendly, sustainable, high-quality, food market applications

Target Compounds

(GAGs)

the development of business models

The regional pilots

Turkish seabream aquaculture side-stream and jellyfish by-catch

Value Creation throughout FOODIMAR

Identification of valuable fractions and compounds

Green and industry applicable extraction methods

Product prototypes development and end- consumers involvement

Commercialisation potential and policy recommendations

Resource efficiency and environmental, economical and social impacts

Whitefish side-streams production in Norway

Target Species: cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens).

Tons	Production 2024	Head*	Backbones*
Cod	204 000	40 800	20 400
Haddock	74 000	11 840	7 400
Saithe	195 000	19 500	19 500

Challenges for collagen extraction:

Raw materials are a mix of bones and flesh

Lower yield and quality of gelatine and collagen

Side streams fractionation step

Screw separator of backbones and heads

Flesh

Bones

^{*} Trials run in collaboration with PLUSS project (312000281)

Collagen, gelatine or hydrolysed collagen, What is it?

	Native collagen	Gelatine	Hydrolysed collagen
Structure	Intact triple helix	Partially denatured	Broken into small peptides
Molecular weight	~300 kDa	~50-100 kDa	~1-5 kDa
Extraction	Acid or low temperature	Heat extraction (60°C-100°C)	Enzymatic hydrolysis
Solubility	Poor	Soluble in warm water, gelling	Soluble
Digestibility	Low	Moderate	High
Main uses	Biomedical	Food, cosmetic	Nutraceutical, cosmetic
Market value	\$\$	\$	\$\$\$

Gelatine and hydrolyzed collagen extraction

CHALMERS

- Demineralization with EDTA, does not make a difference in terms of the OM extracted compared to the no-demineralized material
- 2. Finally, optimization of collagen extraction was carried out with no-demineralized bones

Cascade collagen extraction

% of collagen extracted (HYP) at different times of extraction

UAE increase four times the yield of extracted collagen after only 30 minutes of extraction compared to the conventional method

Norwegian whitefish side streams (heads and backbones) are a good source of high value products:

Protein rich mince -> development of healthy seafood products

Bones fraction -> Collagen, gelatine or hydrolysed collagen

Marine collagen demand is increasing and could reach 2,3\$ billion in 2032 and fish skin is highly competitive access*.

Fish bones = cheap and available raw material alternative

Range price for gelatine 15-60\$/kg and hydrolysed collagen 30-100 \$/kg

GET IN TOUCH

www.foodimar.eu

FOODIMAR

